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Abstract In this paper, we present an approach based on a combi-
nation of convolutional neural networks and analytical algorithms to
interpolate between neighboring conebeam projections for upsampling
along circular trajectories. More precisely, networks are trained to
interpolate the angularly centered projection between the input projec-
tions of different angular distances. Experiments show that an analyt-
ical interpolation as additional input is more beneficial than adding
more neighboring projections. Using our best model, we achieve an
x8 upsampling by repeating the interpolation three times. Though not
depending on a specific reconstruction algorithm, we show that FDK
reconstructions substantially benefit from this upsampling for remov-
ing streak artifacts. Using this FDK reconstruction as initialization for
ART is also superior to other initializations but comes with a higher
computation time and therefore cannot be considered as an option in
an interventional setting.

1 Introduction

Conebeam X-ray CT (CBCT) is a helpful tool for surgeons
to guide them during interventions. The downside is that
the patients as well as the surgeons are exposed to harmful
X-radiation. Reducing it is possible by acquiring fewer pro-
jections or applying less radiation while keeping the number
of projections high. In both cases however, the image quality
of the reconstructed volumes using the commonly used FDK
algorithm is severely impaired by streak artifacts or noise.
Many algorithms have been proposed to overcome these arti-
facts [1] but are too costly in terms of computation time to
be applicable in an interventional setting, especially iterative
methods that need to compute both forward and backprojec-
tions in each iteration for the entire 3-D volume.
Convolutional neural networks (CNNs) and deep learning
have found their way into medical imaging [2] and CT im-
age reconstruction [3]. Owing to their trainable nature, they
directly incorporate domain knowledge to approximate the
reconstruction more closely. Despite the high computational
power of modern PC systems, training CNNs on whole 3-
D data sets is usually not feasible due to the large mem-
ory requirements and is often stripped down to 2-D prob-
lems or patch-based 3-D approaches. The inherent two-
dimensionality of conebeam projections suggests using them
in combination with CNNs. The method proposed here will
be used to interpolate between these projections which en-
ables an upsampling along a circular trajectory around the
scanned subject. Since the interpolation is carried out in pro-
jection space, the method does not rely on any reconstruction
algorithm and preserves data consistency.

2 Method

2.1 Analytical Projection Interpolation

As described in [4], conebeam projections can be approxi-
mately interpolated by using (Eq. 24 in [4])

g(λ + ε∆λ ,α)' (1− ε)g(λ ,b(λ + ε∆λ ,α)−a(λ ))

+ εg(λ + ε∆λ ,b(λ + ε∆λ ,α)−a(λ +∆λ ))
(1)

for projections g(λ ,α) from source positions a(λ ) in direc-
tions α and points of interest b(λ ,α) that are closest to the
rotation axis on the line through a(λ ) with direction α . Un-
like [4], the directions α here are chosen to coincide with
the projection lines of the projection to be interpolated. This
only requires interpolating on the given projections.

2.2 CNN Approach

Assuming an equiangular sampling of conebeam projections
along a circular trajectory, the presented approach upsamples
along the trajectory by subsequently interpolating projections
angularly centered between neighboring projections. Simple
algorithms like linear interpolation are not applicable because
of the sinusoidal structure and perspective distortions caused
by the conebeam. A U-Net [5] is used to approximate this
highly complex interpolation because of its large receptive
field that is able to capture and trace larger translations in
the projections compared to flat CNN architectures. (1) Net-
works are trained to predict the projection angularly centered
between two projections from only its direct neighbors for
2°, 4° and 8° of angular distance (referred to as nn2). (2) The
number of neighboring input projections is increased from
2 to 4 and 8 neighbors to provide more angular information
(referred to as nn4, nn8). (3) Instead of increasing the num-
ber of neighboring projections, the analytical interpolation
described in Sec. 2.1 with ε = 0.5 is used as an additional
input which is supposed to guide the network closer to the
true interpolation (referred to as nn2+ana).

2.3 Datasets and Training

The data of 22 subjects from the CT Lymph Nodes collection
[6] of The Cancer Imaging Archive [7] is used, consisting
of reconstructed volumes of the abdomen with different in-
plane spacings that serve as ground truth. Conebeam projec-
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Up Method NMSE PSNR SSIM
(×10−5) [dB] [%]

x2 ana 10.88 98.45 99.26
x2 nn2 8.63 98.91 99.01
x2 nn4 11.49 97.85 98.80
x2 nn8 17.32 95.74 97.87
x2 nn2+ana 10.91 97.97 98.74

x4 ana 32.60 93.65 97.84
x4 nn2 17.15 95.73 98.24
x4 nn4 27.63 93.69 97.53
x4 nn8 40.20 92.27 96.34
x4 nn2+ana 18.24 95.61 98.01

x8 ana 93.52 89.26 94.44
x8 nn2 58.64 90.87 96.03
x8 nn4 79.94 89.49 94.39
x8 nn8 114.83 87.93 92.61
x8 nn2+ana 32.45 93.34 96.98

Table 1: Projection errors for different upsampling methods.

tions were generated using the CTL toolkit [8] equiangularly
along a circular trajectory with a source to detector distance
(SDD) of 1000 mm and a source to isocenter distance (SID)
of 750 mm. The flat panel detector consists of 256×256
elements with a pixel size of 4 mm2 (cone angle of 54.2°).
The values were chosen such that most projections were not
truncated and to enable a faster training.
The U-Net [5] has a depth of 5 and is slightly modified. The
encoder doubles the number of layers after each average
pooling, whereas the decoder halves the number of layers
after each nearest neighbor upsampling. The optimizer is
SGD with a weight decay of 1×10−4 and a learning rate
of 6×10−3 that gradually drops to 1×10−6 by a factor of
0.8 after every 10 epochs of no improvement in validation
loss. Every network was trained for 300 epochs using mean
squared error (MSE) and another 300 epochs using equally
weighted l1 and MS-SSIM loss similar to [9] to focus more
on general structures and edges. 16, 4 and 2 datasets were
used for training, validation and testing, respectively. For
faster convergence, the projections were normalized between
0 and approximately 1 by dividing by the 99th percentile of
all projections of all datasets.

3 Results

3.1 Projections

The different interpolation methods are evaluated on the pro-
jections first. Except for the analytical upsampling described
in Sec. 2.1, all methods interpolate the projection angularly
centered between the input projections, which is repeated
for x4 and x8 upsampling using the corresponding trained
networks. For the analytical upsampling, the parameter ε is

Method NMSE PSNR SSIM
[%] [dB] [%]

full 4.95 82.95 99.14
sparse 16.09 75.05 97.72

ana 7.43 79.22 98.81
nn2 6.51 80.26 98.97
nn4 6.74 79.96 98.92
nn8 7.28 79.40 98.83
nn2+ana 6.00 81.00 99.03

Table 2: Reconstruction errors of FDK reconstructions for differ-
ent upsampling methods from 45 available projections.

chosen to directly resemble the positions of the projections
to be interpolated. Tab. 1 shows the results for the error
metrics normalized mean squared error (NMSE), peak signal-
to-noise ratio (PSNR) and structural similarity index measure
(SSIM) averaged over all projections. The calculation of the
metrics obviously excludes the non-interpolated projections.
Interestingly, the results are quite different for the different
upsampling stages.
For the single interpolation (x2, angular difference of 2°),
nn2 gives the best results for NMSE and PSNR. The analyti-
cal interpolation however results in the highest SSIM.
Interpolating twice (x4, angular difference of 4°) is done best
by nn2, this time for all metrics.
Finally, the optimal method for carrying out the interpolation
three times (x8, angular difference of 8°) is using nn2+ana.
A patch of an exemplary x8 interpolation created with the dif-
ferent methods is shown in Fig. 1. Compared to the ground
truth patch, the other patches are more blurry. The patch
created with the analytical interpolation looks like the su-
perimposition of two projections. The nn4 and nn8 patches
seem to have more high frequencies than nn2 and conse-
quently look less blurry. nn2+ana is visually closest to the
ground truth and the least blurred.

3.2 Reconstructions

Evaluating in projection space only does not fully show the
benefits of the proposed method. It is also necessary to com-
pare the reconstructions. We decided for the commonly used
FDK [10] algorithm as well as ART [11] without interpolated
projections initialized with the FDK reconstruction using all
interpolated projections.
All reconstructions are created with the CTL toolkit [8]. The
ART reconstructions run for 5 iterations with enabled posi-
tivity constraint.
Since the number of projections is still relatively small and
the resolution of the detector is quite low, the reconstructions
will also be compared to the FDK reconstruction using all
360 projections to find lower bounds for the error metrics.
As described previously, though not depending on any recon-
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Figure 1: Top: Interpolated projections (central part) of x8 upsampling of different interpolation methods compared to ground truth
projection (GT). Bottom: Zoomed patches around a hip implant.

struction algorithm, the interpolated projections are supposed
to increase the quality of the reconstructions by providing a
more appropriate sampling of projections.
This hypothesis is evaluated using the FDK reconstruction
algorithm, first. For brevity, only the reconstructions of the
highest upsampling (x8, 45 available projections) are investi-
gated. Tab. 2 shows the error metrics for the different meth-
ods averaged over all axial slices. For reference, the first
two rows serve as lower/upper bounds: values for the full
FDK describe the errors between the ground truth volume
and the volume reconstructed from 360 projections, whereas
values for the sparse FDK describe the errors between ground
truth and reconstruction from 45 projections. All interpola-
tion methods optimize the sparse FDK reconstruction and
are quantitatively closer to the full FDK. nn2+ana works
best, followed by nn2, nn4, nn8 and using only the analyt-
ical interpolation. This closely resembles the errors on the
projections described in the previous section.
The left column of Fig. 2 shows exemplary FDK reconstruc-
tions using the different methods. Compared to the direct
FDK reconstruction from 45 projections (sparse), every
method reduces the streak artifacts. The analytical upsam-
pling (ana), however, basically results in a radially blurred re-
construction. None of the CNN-based reconstructions suffers
from streak artifacts or radial blur, but they appear slightly
more blurred than the sparse FDK reconstruction. As ex-
pected from the quantitative analysis, nn2+ana also creates
the best visual result.
ART provides another simple reconstruction algorithm. Due
to its iterative nature, it is inherently slower than FDK but
enables simply adding additional constraints resulting in re-
constructions of higher quality. For a better convergence,
ART is initialized with another reconstruction. In our ex-
periments, we use the FDK reconstructions of the different
interpolation methods and run ART with only the 45 available
projections, which results in the best compromise between
reconstruction time and quality. Tab. 3 shows the error met-
rics. Zero-initialized ART and sparse-FDK-initialized ART
are shown for reference. In all cases, ART outperforms FDK.
Again, nn2+ana works best, followed by the other methods

sparse

ana

nn4

nn2

nn2+ana

nn8

Figure 2: Reconstructions for different upsampling methods. Left
column: FDK. Right column: ART initialized with FDK.

Init. NMSE PSNR SSIM
[%] [dB] [%]

zero 2.72 82.35 99.73
sparse 2.28 83.10 99.78

ana 2.19 83.25 99.80
nn2 1.88 83.98 99.84
nn4 1.96 83.76 99.83
nn8 2.12 83.42 99.81
nn2+ana 1.65 84.59 99.86

Table 3: Reconstruction errors of ART reconstructions for differ-
ent upsampling methods from 45 available projections.
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in the same order as in the FDK reconstructions.
The right column of Fig. 2 shows exemplary ART recon-
structions using the different methods. They are not only
quantitatively closer to the ground truth but also qualitatively
outperform their FDK counterparts. There are only slight
visual differences of the ART initialized with the different
FDK reconstructions. For the sparse case, edges are pre-
served well but tissues of the same absorption coefficient
appear noisy. nn2+ana has the best visual quality with the
least noise and the best edge preservation compared to the
other methods.

4 Discussion

Increasing the number of neighboring projections does not
increase the quality of the interpolated projections. Since the
additional projections are only provided to the CNN as input
channels and the convolutions are carried out per channel, it
is possible that (without any special weight initialization) the
information from more distant neighbors is not local enough
to be considered as helpful knowledge during backpropaga-
tion. Moreover, increasing the number of input projections
even impairs the prediction quality. Further tests need to
investigate why different interpolation methods work best for
certain upsampling stages.
The simulated projections do not contain noise, are almost
not truncated, have a low resolution and a rather large pixel
spacing. Further experiments need to focus on more realistic
detector and gantry parameters and the method needs to
be tested on real data, especially including interventional
instruments and other artifact creating influences.
The used error metrics only give a rough impression of the
quality. Due to the blurring of edges caused by the interpo-
lation, future work needs to focus on how exactly mappings
of edges are changed as well as how the reconstructions
compare to other state-of-the-art methods.
Using the neighboring projections as input channels of the
U-Net is a rather straightforward way. As with other deep
learning methods, it is conceivable that another network ar-
chitecture can extract more information from the input data
and thus improve the quality even further, which will be part
of future experiments. The code is available on Github1.

5 Conclusion

It was shown that conebeam projection interpolation using
CNNs applied to trajectory upsampling significantly reduces
streak artifacts from FDK reconstructions and provides a
strong prior for iterative reconstruction algorithms when used
for the initialization in ART. Providing further knowledge
about the interpolation to the network in terms of the analyti-
cal interpolation approach similar to [4], the quality can be
improved even further. This allows for a dose reduction by

1https://github.com/phernst/conebeam_interpolation

a factor of at least eight while still providing a good quality
of the reconstructions. Compared to an FDK reconstruction
from 45 projections, our best interpolation method increases
the PSNR by almost 6 dB. Though not applicable in interven-
tions due to time requirements, initializing an ART with the
FDK reconstruction further increases the PSNR to 84.59 dB.
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